

RETROALIMENTACIÓN GUIA Nº9 FISICA: REPASO CARGAS ELECTRICAS EN MOVIMIENTO 8 ° ENSEÑANZA BASICA

ACTIVIDAD

I. Para cada una de las siguientes magnitudes complete la información de la tabla. (1 pto c/u) (13 ptos en total)

Magnitud	Letra que la representa	Unidad de medida	Abreviatura de la unidad
Voltaje, diferencia de potencial o Tensión	V	Volt	[V]
Intensidad de corriente	I	Ampere	[A]
Resistencia Eléctrica	R	Ohm	$[\Omega]$
Potencia Eléctrica	P	Watt	[w]
Energía eléctrica	E	Watt·hora kiloWatt·hora	[Wh] [kWh]
		Joule	[J]

II. Resuelve los siguientes problemas:

Recuerda:

Ley de Ohm

1. Un conductor eléctrico es atravesado por 12 [C] en 3 [s]. ¿Cuál es su intensidad de corriente? (Recuerda que I = $\frac{Q}{t}$) (1 pto)

Datos:

$$Q = 12 [C]$$

 $t = 3 [s]$

Para determinar la intensidad de corriente que circula por el conductor eléctrico utilizamos la siguiente expresión:

$$I = \frac{Q}{t}$$

Reemplazamos los datos en nuestra ecuación y nos quedaría:

$$I = \frac{Q}{t} = \frac{12[C]}{3[s]} = 4[A]$$

Por lo tanto, por el conductor circula una corriente cuya intensidad es de 4 [A].

2. Si ya determinamos la intensidad de corriente en el ejercicio anterior, y conocemos que una fuente de poder entrega 2 [V], ¿cuál será la resistencia eléctrica del conductor eléctrico? (1 pto) Datos:

$$I = 4[A]$$

$$V = 2[V]$$

Utilizamos la ley de ohm para poder determinar la resistencia eléctrica

$$R = \frac{V}{I} = \frac{2 V}{4 A} = 0.5 [\Omega]$$

Presentará una resistencia eléctrica de 0,5 [Ω].

3. En un circuito simple tenemos una resistencia de 3Ω y un voltaje de 15[V], ¿cuál sería la intensidad de corriente? y ¿cuánta cantidad de carga (Q) se transporta en 2 [s]? (2 pto c/u) Datos:

$$R=3[\Omega]$$

$$V = 15 [V]$$

Utilizamos la ley de ohm para poder determinar la resistencia eléctrica

$$I = \frac{V}{R} = \frac{15 V}{3\Omega} = 5 [A]$$

Circula una intensidad de corriente de 5 [A].(1 pto)

¿Cuánta cantidad de carga (Q) se transporta en 2 [s]?

Datos:

$$I = 5 [A]$$

$$t= 2[s]$$

Para determinar la cantidad de carga (Q) que circula por el conductor eléctrico utilizamos la siguiente expresión:

Reemplazamos los datos en nuestra ecuación y nos quedaría:

$$Q = I \cdot t = 5 [A] \cdot 2[s] = 10[C]$$

Por lo tanto, por el conductor se transportan 10 [C] de carga eléctrica.(1 pto)

4. En un circuito hay una intensidad de corriente de 10 [A] y una resistencia de $5[\Omega]$, ¿cuál será el voltaje? (1 pto)

Datos:

$$R = 5[\Omega]$$

$$I = 10 [A]$$

Utilizamos la ley de ohm para poder determinar el voltaje:

$$V = I \cdot R = 10[A] \cdot 5[\Omega] = 50[V]$$

Se aplico un voltaje de 50 [V].

5. Usando el voltaje anterior, si cambiamos de material y este tiene una resistencia de $10 \Omega_{\rm s}$ ¿cuál será la nueva intensidad de corriente? (1 pto)

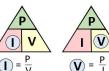
Datos:

$$R=10 [\Omega]$$

$$V = 50[V]$$

Utilizamos la ley de ohm para poder determinar la resistencia eléctrica

$$I = \frac{V}{R} = \frac{50V}{10 \Omega} = 5 [A]$$


La nueva intensidad de corriente será de 5 [A].

III. Resuelva los siguientes problemas

Recuerda:

Potencia Eléctrica

Energía Eléctrica consumida:

$$E = P \cdot t$$

1. Calcule la potencia eléctrica de una resistencia eléctrica del circuito simple sabiendo que está alimentada a un voltaje de 6 [V] y por ella pasa una intensidad de corriente de 2 [A]. (1 pto) Datos:

I = 2[A]

$$V = 6 \text{ LV}$$

$$V=6[V]$$

Utilizamos la expresión que nos permite determinar la potencia eléctrica

$$P = I \cdot V = 6[V] \cdot 2[A] = 12[W]$$

La potencia desarrollada es de 12 [W]

2. ¿A qué Voltaje está conectado un motor eléctrico que tiene una potencia de 18 [W] y por el circula una intensidad de corriente de 3 [A]? (1 pto)

Datos:

$$P = 18 [W]$$

$$I = 3 [A]$$

A partir de la expresión que nos permite determinar la potencia eléctrica, determinamos una que nos permita determinar el voltaje

$$P = I \cdot V \rightarrow V = \frac{P}{I} = \frac{18 [W]}{3[A]} = 6[V]$$

El motor está conectado a un voltaje de 6 [V].

3. Por los filamentos de una ampolleta circula una corriente electrica de 2 [A]. Si está se conecta a una fuente de 20 [V], calule:

a) Su potencia eléctrica(1 pto)

Datos:

I = 2 [A]V= 20 [V]

Utilizamos la expresión que nos permite determinar la potencia eléctrica

$$P = I \cdot V = 20[V] \cdot 2[A] = 40[W]$$

La potencia es de 40[W]

b) ¿Cuánta energía consumirá si ha estado encendido durante 24 horas? Entregue la respuesta en kWh. (1 pto)

Determinamos la energía electica consumida con la siguiente expresión:

$$E = P \cdot t$$

Antes de reemplazar nuestros datos, debemos transformar la potencia expresada en Watts a kilowatts recordando que $1000[W] = 1 \ [kW]$. Para esta transformación, dividiremos por 1000, quedándonos:

$$40 \text{ [W]} = 0.04 \text{ [kW]}$$

Reemplazamos los datos y obtenemos:

$$E = 0.04[kW] \cdot 24[h]$$

$$E = 0.96[kW] \cdot [h] = 0.96[kWh]$$

IV Considere los siguientes equipos operando a su máxima potencia durante una hora. A continuación se indica la potencia eléctrica de cada uno:

Calentador: 2000[W] Plancha: 1000[W] Microondas: 800[W] Ampolleta: 60 [W]

¿Qué energía consume cada uno en ese período de tiempo? (1 pto c/u)

Determinamos la energía electica consumida con la siguiente expresión:

$$E = P \cdot t$$

Recuerda que el periodo de tiempo es de 1 hora, por lo tanto:

- ➤ El calentador consume 2000[Wh] ó 2[kWh] (1 pto)
- La Plancha consume 1000[Wh] ó 1 [kWh] (1 pto)
- ➤ Microondas consume 800[Wh] ó 0,8 [kWh] (1 pto)
- Ampolleta consume 60 [Wh] \(\delta \) 0,06 [kWh] (1 pto)

V. ¿Cuánto se gasta en energía eléctrica por mes utilizando los artefactos detallados en la tabla? Considere un mes de 30 días y el valor de un kWh \$100. (4 ptos en total)

APARATO	POTENCIA kW	TIEMPO DE USO DIARIO (HORAS)
1 Aire acondicionado	1,5	8
1 Refrigerador	0,36	24
1 Ampolletas	0,1	10

El consumo del <u>aire acondicionado</u> es de 30 x 8 h x 1,5 kW = 360 [kWh] El costo de consumo del aire acondicionado es de \$ 100 x 360 [kWh] = \$36.000.(1pto)

El consumo del <u>refrigerador</u> es de $30 \times 24 \times n \times 24 \times 259$, 20×259 , 20

El consumo de la <u>ampolleta</u> es de 30 x 10 h x 0,1 kW = 30 [kWh] El costo de consumo del aire acondicionado es de \$ 100 x 30 [kWh] = \$3.000. (1 pto)

En total, el consumo de estos tres artefactos durante el mes es de 649,2 [kWh]. El costo total de consumo de estos tres artefactos es de $$100 \times 649$,2 [kWh] = \$64.920(1pto)

Puntaje Total: 31

Si tienes un puntaje de 16 puntos o más, puedes pasar a la siguiente clase. De no ser así, repasa los contenidos estudiados apoyándote del texto del estudiante y del material de apoyo indicado en la Guía N°9.