GUIA DE LA CLASE Nº8 MATEMÁTICA ELECTIVO

IVº MEDIO

Nombre	Curso: Fecha:

Objetivo de Aprendizaje:

Transformaciones Isométricas

Objetivo de la clase:

Geometría analítica de la ecuación de la recta

Instrucciones: Esta guía es un recurso de acompañamiento y ejercitación de la clase que veras en el video correspondiente, por lo que puedes imprimirla, una vez resuelta y revisada archivarla en una carpeta por asignatura. En caso de no poder imprimir, no hay ningún problema, ya que puedes ir copiando solo los ejemplos en tu cuaderno y dando respuesta a la ejercitación escribiendo el número de pregunta y su respuesta, especificando N° de guía, y fecha. No olvides que frente a cualquier duda o consulta con respecto a tu clase y/o ejercitación debes contactarnos al correo: matematica.iv.smm@gmail.com

El video correspondiente a esta clase se encuentra en el link: https://youtu.be/NTk4IxwAZQ8

Ecuación de la recta

La recta

Geométricamente podemos decir que una **línea recta** es una sucesión continua e infinita de puntos alineados en una misma dirección; analíticamente, una recta en el **plano** está representada por una ecuación de primer grado con dos variables, x e y.

Ejemplos:

- 1. 5x + 6y + 8 = 0
- 2. y = 4x + 7
- 3. 6x + 4y = 7

Departamento de Matemática.

Ecuación de la recta

Ecuación de la recta

Ecuación principal de la recta

Es de la forma:

m: pendiente (inclinación) de la recta

n : coeficiente de posición

• El **coeficiente de posición** (n), corresponde a la **ordenada** del punto donde la recta intersecta al eje Y.

Ecuación de la recta

Pendiente de la recta

• La **pendiente** entre los puntos del plano $P_1(x_1, y_1)$ y $P_2(x_2, y_2)$ se obtiene a través de la siguiente fórmula:

$$\mathbf{m} = \frac{y_2 - y_1}{x_2 - x_1}$$

Ejemplos:

1. La pendiente entre los puntos $\begin{pmatrix} x_1 & y_1 & x_2 & y_2 \\ (-4, -2) & y & (1, 7) & es \end{pmatrix}$

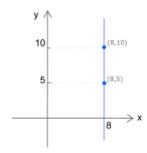
$$\mathbf{m} = \frac{7 - (-2)}{1 - (-4)}$$

$$m = \frac{9}{5}$$

Departamento de Matemática.

Ecuación de la recta

Ecuación de la recta


Pendiente de la recta

2. La pendiente entre los puntos (8, 5)

El denominador es cero, la pendiente está indefinida.

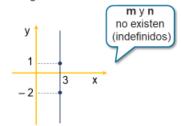
$$\mathbf{m} = \frac{10 - 5}{8 - 8} \implies \mathbf{m} = \frac{5}{0}$$

La recta que pasa por los puntos (8, 5) y (8, 10), es **paralela** al eje Y, y su ecuación es de la forma: **x = 8**.

Ecuación de la recta

Pendiente de la recta

¿Cuál será la pendiente de la recta que pasa por los puntos (3, 1) y (3, -2)?

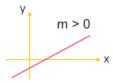

¿Cómo sería su representación gráfica? ¿Cuál será su ecuación?

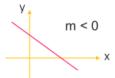
Pendiente: $\mathbf{m} = \frac{-2-1}{3-3}$

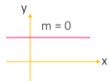
$$\mathbf{m} = \frac{-3}{0}$$

Su ecuación: x = 3

Al graficar resulta:




Departamento de Matemática.


Ecuación de la recta

Ecuación de la recta

Pendiente de la recta

Ecuación de la recta

Gráfico de la recta

Para graficar una recta dada su ecuación, basta con ubicar dos puntos de ella.

La representación gráfica de y = 2x + 3 es

1 2 3 4

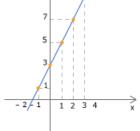
Si x = 1 entonces
$$y = 2.1 + 3 = 5$$

Luego, el punto (1, 5) pertenece a y = 2x + 3

Si un punto (a, b) pertenece a la recta $y = m \cdot x + n$, entonces se debe cumplir que $b = m \cdot a + n$

Gráfico de la recta

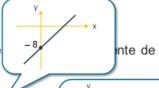
Ejemplos:


- 1. Dado el gráfico de la recta, se puede encontrar su ecuación principal.
- Con (0, 3) y (1, 5) encontrarer m = 2 endiente

$$m = \frac{5 - 3}{1 - 0}$$

$$\Rightarrow$$
 m = $\frac{2}{1}$

• La recta intersecta al eje Y en el punto (0, 3), entonces el coeficiente de posición es 3.



• Por lo tanto, su ecuación principal es y = 2x + 3

Ecuación de la recta

Gráfico de la recta

 En las siguientes ecuaciones, la pendie posición (n), son respectivamente

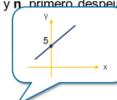
a)
$$y = x - 8$$

$$m = 1 y n = -8$$

b)
$$y = -4x$$

$$m = -4 y n = 0$$

c)
$$6x - y + 13 = 8$$

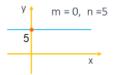

Para determinar **m** y **n** <u>primero despeia</u>remos **y**:

$$-y = 8 - 13 - 6x$$

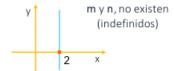
$$-y = -5 - 6x$$

$$y = 6x + 5$$

Luego, m = 6 y n = 5



Ecuación de la recta


Gráfico de la recta

3. ¿Cuál será la pendiente y coeficiente de posición en ecuaciones como: y = 5 o x = 2?

$$y = 5 \Leftrightarrow y = 0 \cdot x + 5$$

x = 2

Algunos puntos que pertenecen a esta recta son:

Algunos puntos que pertenecen a esta recta son:

$$(1,5), (8,5), (-2,5), (-7,5), (0,5), \dots$$
 $(2,5), (2,3), (2,-7), (2,10), (2,0), \dots$

Ecuación de la recta

Ecuación de la recta, dado un punto y la pendiente

La ecuación de la recta que pasa por el punto P₁(x₁, y₁) y tiene pendiente m se puede obtener a través de la siguiente fórmula:

$$y-y_1=m\cdot(x-x_1)$$

Ejemplo:

La ecuación de la recta de pendiente m = -6, que pasa por el punto (3, -2) es:

$$y - (-2) = -6 \cdot (x - 3)$$

$$y + 2 = -6x + 18$$

$$y = -6x + 16$$

Ecuación de la recta, dados dos puntos

La ecuación de la recta que pasa por los puntos:

$$P_1(x_1, y_1)$$
 y $P_2(x_2, y_2)$

se puede obtener a través de la siguiente fórmula:

$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} \cdot (x - x_1)$$

Ecuación de la recta

Ecuación de la recta, dados dos puntos

Ejemplo: La ecuación de la recta que pasa por los puntos

$$\begin{array}{c}
 x_1 & y_1 \\
 (2, -3) & y & (5, 6) & \text{es:} \\
 y - (-3) & = & \frac{6 - (-3)}{5 - 2} \cdot (x - 2) \\
 y + 3 & = & \frac{9}{3} \cdot (x - 2) \\
 y + 3 & = & 3x - 6 \\
 y & = & 3x - 6 - 3 \\
 y & = & 3x - 9
 \end{array}$$